www.dftb.net > Fx lnx

Fx lnx

f'(x)=-a/x²+1/x=(x-a)/x² 定义域为x>0 讨论a 当a

(1)f(x)=lnx-ax+b/x 满足fx+f(1/x)=lnx-ax+b/x-lnx-a/x+b=(b-a)(x+1/x)=0, ∴b=a.f(x)=lnx-ax+a/x, f'(x)=1/x-a-a/x^2,f(1)=0,f'(1)=1-2a, ∴y=f(x)的图像在x=1处的切线:y=(1-2a)(x-1),它过点(0,-5), ∴-5=-1+2a,a=-2. (2)0

f(x)=lnx+a(1-x) 定义域x>0 f'(x)=1/x-a a≤0,f'(x)>0 f(x)单调递增,无解 a>0,驻点x=1/a f''(x)=-1/x²

详细解答

(1)f'(x)=1/x+(a-2),那么f'(1)=1+a-2=0,∴a=1 f(x)=lnx-x,f'(x)=1/x-1=-(x-1)/x (x>0) 令f'(x)≥0,那么0

f(x)=(lnx)'=1/x ∴f'(x)=-1/x²

fx=lnx+2/x 的定义域是 {x| x>0}; 对f(x)求导,有:f'(x)=1/x-2/x^2=(x-2)/x^2 令f'(x)=0,x=2,即fx在x=2处取极值; 故函数单调性讨论如下: 当0

解:求导数,f'x = 1/x + 2mx 分类讨论,若m>=0,则,导数恒大于零,函数在定义域(0,+∞)上单调递增 若m0,则f(x)单调增加;f'(x)

定义域为x>0, 且x≠1 f'(x)=[(x-1)/x-lnx]/(x-1)²=[x-1-xlnx]/[x(x-1)²] 令g(x)=x-1-xlnx g'(x)=1-lnx-1=-lnx=0得x=1 g(1)=0, 为g(x)的极大值点,因此有g(x)

等下,我发图片

网站地图

All rights reserved Powered by www.dftb.net

copyright ©right 2010-2021。
www.dftb.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com